Growth-dependent DNA breakage and cell death in a gyrase mutant of Salmonella.

نویسندگان

  • E Garí
  • L Bossi
  • N Figueroa-Bossi
چکیده

A class of gyrase mutants of Salmonella enterica mimics the properties of bacteria exposed to quinolones. These mutants suffer spontaneous DNA breakage during normal growth and depend on recombinational repair for viability. Unlike quinolone-treated bacteria, however, they do not show accumulation of cleavable gyrase-DNA complexes. In recA or recB mutant backgrounds, the temperature-sensitive (ts) allele gyrA208 causes rapid cell death at 43 degrees. Here, we isolated "suppressor-of-death" mutations, that is, secondary changes that allow a gyrA208 recB double mutant to survive a prolonged exposure to 43 degrees and subsequently to form colonies at 28 degrees. In most isolates, the secondary change was itself a ts mutation. Three ts alleles were mapped in genes coding for amino acyl tRNA synthetases (alaS, glnS, and lysS). Allele alaS216 completely abolished DNA breakage in a gyrA208 recA double mutant. Likewise, treating this mutant with chloramphenicol prevented death and DNA damage at 43 degrees. Additional suppressors of gyrA208 lethality include rpoB mutations and, surprisingly, icd mutations inactivating isocitrate dehydrogenase. We postulate that the primary effect of the gyrase alteration is to hamper replication fork movement. Inhibiting DNA replication under conditions of continuing macromolecular synthesis ("unbalanced growth") activates a mechanism that causes DNA breakage and cell death, reminiscent of "thymineless" lethality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium.

We isolated mutant strains of the facultative anaerobe Salmonella typhimurium that grow either aerobically or anaerobically. Strict anaerobic mutants contained a defective DNA topoisomerase I gene (topI), while strict aerobic mutants contained a defective DNA gyrase subunit A gene (gyrA, also nalA). Topoisomerase I activity was detected in cell-free extracts of strict aerobic mutants but not of...

متن کامل

Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli

Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, double-stranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This im...

متن کامل

Mycobacterium tuberculosis DNA gyrase as a target for drug discovery.

Bacterial DNA gyrase is an important target of antibacterial agents, including fluoroquinolones. In most bacterial species, fluoroquinolones inhibit DNA gyrase and topoisomerase IV and cause bacterial cell-death. Other naturally occurring bacterial DNA gyrase inhibitors, such as novobiocin, are also known to be effective as antibacterial agents. DNA gyrase is an ATP-dependent enzyme that acts b...

متن کامل

An Escherichia coli DNA topoisomerase I mutant has a compensatory mutation that alters two residues between functional domains of the DNA gyrase A protein.

Nucleotide sequence analysis revealed that the compensatory gyrA mutation in Escherichia coli DM750 affects DNA supercoiling by interchanging the identities of Ala-569 and Thr-586 in the DNA gyrase A subunit. These residues flank Arg-571, a site for trypsin cleavage that splits gyrase A protein between DNA breakage-reunion and DNA-binding domains. The putative interdomain locations of the DM750...

متن کامل

Clerocidin selectively modifies the gyrase-DNA gate to induce irreversible and reversible DNA damage

Clerocidin (CL), a microbial diterpenoid, reacts with DNA via its epoxide group and stimulates DNA cleavage by type II DNA topoisomerases. The molecular basis of CL action is poorly understood. We establish by genetic means that CL targets DNA gyrase in the gram-positive bacterium Streptococcus pneumoniae, and promotes gyrase-dependent single- and double-stranded DNA cleavage in vitro. CL-stimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 159 4  شماره 

صفحات  -

تاریخ انتشار 2001